Blog

Discover how synthetic data revolutionized our tank detection model training.

Obstacles with Conventional Data in Detecting Tanks

Training a tank detection model using conventional data presents several challenges. One of the biggest obstacles is the scarcity of labeled data. Tanks are not everyday objects, and acquiring enough annotated images for training is extremely difficult due to confidentiality of images.

Additionally, conventional data often lacks diversity. Real-world scenarios can vary greatly, and it’s difficult to capture all possible variations of tanks in different environments, lighting conditions, and angles. This lack of diversity can lead to a model that performs well in controlled conditions but fails in real-world applications.

What is Synthetic Data and Why It Matters

Synthetic data is artificially generated data that mimics real-world data. Unlike conventional data, synthetic data can be produced in large quantities and tailored to specific needs. This allows for the creation of highly diverse datasets that cover a wide range of scenarios.

Synthetic data is crucial for training machine learning models because it provides the volume and variety needed to improve model robustness. Additionally, synthetic data comes fully labelled, so no annotation effort is needed. It also helps in situations where collecting real-world data is impractical or impossible, such as in highly controlled or dangerous environments.

How We Created Synthetic Data for Tank Detection

To create synthetic data for tank detection, we used our procedural engine. Thanks to our proprietary technology, we generated various types of tanks and in different environments. These environments included diverse terrains, lighting conditions, and weather scenarios to ensure a comprehensive dataset. The procedural nature of our engine allows user to control image parameters ranging from the environment, lighting, camera lenses and objects in the image. By setting these restrictions, the engine can generate an unlimited number of images that meet computer vision model’s needs. This huge number of images helps the model learn to focus on the essential features of tanks rather than being influenced by specific visual patterns.

Example of synthetic images used to train tank detection model.

The Impact of Synthetic Data on Model Performance

The use of synthetic data had a significant positive impact on our tank detection model. The model trained on synthetic data demonstrated high accuracy and robustness. It excelled at detecting tanks in various conditions and environments, showing great generalization capabilities. Additionally, the training process became more efficient. With a large and diverse synthetic dataset, the model required fewer training iterations to achieve high performance, saving both time and computational resources.

More Content

Blog

6 Steps to Train Your Computer Vision Model with Synthetic Images

In computer vision, developing robust and accurate models depends on the quality and volume of training data. Synthetic images, generated by procedural engine, have emerged as a transformative solution to the data bottleneck. They empower developers to overcome data scarcity, reduce biases, and enhance model performance in real-world scenarios. Here’s a detailed guide to training […]

Blog

See How Synthetic Images Transformed Our Weapon Detection Model Training

The Need for Weapon Detection in Today’s Security Landscape In an era where threats evolve rapidly, the demand for cutting-edge security solutions has never been more critical. Weapon detection technology is a foundational in safeguarding public spaces and critical infrastructures, from airports to schools and corporate offices. Advanced security surveillance systems that can accurately detect […]

Blog

How Synthetic Images Reduce False Positives in AI Training

False positives—incorrect detections in AI models—can significantly impact performance, particularly in critical applications such as security, surveillance, and autonomous systems. Synthetic images provide a powerful solution to reduce false positives by offering controlled, high-quality, and diverse training data that enhances model robustness. This article explores how synthetic images can help mitigate false positives and improve […]

Generate Fully Labelled Synthetic Images
in Hours, Not Months!