Blog

Discover how synthetic data revolutionized our tank detection model training.

Obstacles with Conventional Data in Detecting Tanks

Training a tank detection model using conventional data presents several challenges. One of the biggest obstacles is the scarcity of labeled data. Tanks are not everyday objects, and acquiring enough annotated images for training is extremely difficult due to confidentiality of images.

Additionally, conventional data often lacks diversity. Real-world scenarios can vary greatly, and it’s difficult to capture all possible variations of tanks in different environments, lighting conditions, and angles. This lack of diversity can lead to a model that performs well in controlled conditions but fails in real-world applications.

What is Synthetic Data and Why It Matters

Synthetic data is artificially generated data that mimics real-world data. Unlike conventional data, synthetic data can be produced in large quantities and tailored to specific needs. This allows for the creation of highly diverse datasets that cover a wide range of scenarios.

Synthetic data is crucial for training machine learning models because it provides the volume and variety needed to improve model robustness. Additionally, synthetic data comes fully labelled, so no annotation effort is needed. It also helps in situations where collecting real-world data is impractical or impossible, such as in highly controlled or dangerous environments.

How We Created Synthetic Data for Tank Detection

To create synthetic data for tank detection, we used our procedural engine. Thanks to our proprietary technology, we generated various types of tanks and in different environments. These environments included diverse terrains, lighting conditions, and weather scenarios to ensure a comprehensive dataset. The procedural nature of our engine allows user to control image parameters ranging from the environment, lighting, camera lenses and objects in the image. By setting these restrictions, the engine can generate an unlimited number of images that meet computer vision model’s needs. This huge number of images helps the model learn to focus on the essential features of tanks rather than being influenced by specific visual patterns.

Example of synthetic images used to train tank detection model.

The Impact of Synthetic Data on Model Performance

The use of synthetic data had a significant positive impact on our tank detection model. The model trained on synthetic data demonstrated high accuracy and robustness. It excelled at detecting tanks in various conditions and environments, showing great generalization capabilities. Additionally, the training process became more efficient. With a large and diverse synthetic dataset, the model required fewer training iterations to achieve high performance, saving both time and computational resources.

More Content

Blog

The differences between Generative AI and a procedural engine for image creation

Generative AI and procedural engines offer unique methods for image creation, each with its own strengths in flexibility, control, and data requirements. Both of these methods are good for different use cases and benefits driven from these Understanding the Methodologies Behind Image Creation Generative AI and procedural engines represent two fundamentally different approaches to image […]

Blog

Synthetic Data vs. Real-World Data: A Game Changer for AI Model Training

In the realm of AI and machine learning, the debate between synthetic datasets and real-world images is a pivotal one. Both have their merits, but when it comes to efficiency, flexibility, and performance, synthetic data is emerging as the clear frontrunner. Let’s explore why. Speed, Cost, and Flexibility: The Case for Synthetic Data Building a […]

Blog

See How Synthetic Images Transformed Our Weapon Detection Model Training

The Need for Weapon Detection in Today’s Security Landscape In an era where threats evolve rapidly, the demand for cutting-edge security solutions has never been more critical. Weapon detection technology is a foundational in safeguarding public spaces and critical infrastructures, from airports to schools and corporate offices. Advanced security surveillance systems that can accurately detect […]

Boost AI Model Accuracy

with High-Quality Synthetic Images!