Blog
Choosing between synthetic data and real-life data for AI model training is both a strategic and technical decision. Each option has its advantages and challenges, and the right choice depends on multiple factors such as data availability, quality, ethical considerations, complexity, and cost. Let’s explore how to make this decision effectively, navigating five critical questions. […]
Blog
In contemporary computer vision development, the shortage of accurately labeled data remains one of the most persistent bottlenecks. Manual annotation is costly, slow, and prone to inconsistency, consuming over 90% of many project resources. Synthetic image generation combined with automated annotation offers a powerful solution by producing massive volumes of precisely labeled images. This accelerates […]
Blog
In defense and security applications, where precision, reliability, and situational awareness are critical, the performance of computer vision models depends in 80% on the inputted labeled data. Annotation is the process of adding structured information to raw image or video data so that AI systems can learn to interpret the visual world. It enables models […]