Blog

Discover how synthetic data revolutionized our tank detection model training.

Obstacles with Conventional Data in Detecting Tanks

Training a tank detection model using conventional data presents several challenges. One of the biggest obstacles is the scarcity of labeled data. Tanks are not everyday objects, and acquiring enough annotated images for training is extremely difficult due to confidentiality of images.

Additionally, conventional data often lacks diversity. Real-world scenarios can vary greatly, and it’s difficult to capture all possible variations of tanks in different environments, lighting conditions, and angles. This lack of diversity can lead to a model that performs well in controlled conditions but fails in real-world applications.

What is Synthetic Data and Why It Matters

Synthetic data is artificially generated data that mimics real-world data. Unlike conventional data, synthetic data can be produced in large quantities and tailored to specific needs. This allows for the creation of highly diverse datasets that cover a wide range of scenarios.

Synthetic data is crucial for training machine learning models because it provides the volume and variety needed to improve model robustness. Additionally, synthetic data comes fully labelled, so no annotation effort is needed. It also helps in situations where collecting real-world data is impractical or impossible, such as in highly controlled or dangerous environments.

How We Created Synthetic Data for Tank Detection

To create synthetic data for tank detection, we used our procedural engine. Thanks to our proprietary technology, we generated various types of tanks and in different environments. These environments included diverse terrains, lighting conditions, and weather scenarios to ensure a comprehensive dataset. The procedural nature of our engine allows user to control image parameters ranging from the environment, lighting, camera lenses and objects in the image. By setting these restrictions, the engine can generate an unlimited number of images that meet computer vision model’s needs. This huge number of images helps the model learn to focus on the essential features of tanks rather than being influenced by specific visual patterns.

Example of synthetic images used to train tank detection model.

The Impact of Synthetic Data on Model Performance

The use of synthetic data had a significant positive impact on our tank detection model. The model trained on synthetic data demonstrated high accuracy and robustness. It excelled at detecting tanks in various conditions and environments, showing great generalization capabilities. Additionally, the training process became more efficient. With a large and diverse synthetic dataset, the model required fewer training iterations to achieve high performance, saving both time and computational resources.

More Content

Blog

Common Myths About Synthetic Images – Debunked

Despite the rapid advances in generative AI and simulation technologies, synthetic images are still misunderstood across research and computer vision industry. For computer vision scientists focused on accuracy, scalability, and ethical AI model training, it’s essential to separate facts from fiction. We work with organizations that depend on data precision—from defense and security applications to […]

Blog

How to Convince Your Team to Invest in Synthetic Image Datasets

Transitioning from real-world data to synthetic datasets isn’t always easy, especially for teams that have relied on conventional methods for years. The most common objections include: The Case for Synthetic Data 1. Faster, Cost-Effective Data Generation Real-world data collection is slow and costly, often requiring extensive fieldwork and manual annotation. Synthetic datasets, on the other […]

Blog

How to Evaluate a Synthetic Image Dataset Specification for Training a High-Performance Computer Vision Model

In the domain of computer vision, the dataset’s relevance, quality, and diversity are key drivers in achieving high accuracy and reliable performance. A well-specified synthetic dataset doesn’t just enable effective model training; it sets the foundation for the model’s success in challenging, real-world scenarios. This guide outlines seven essential pillars for evaluating synthetic datasets: relevance […]

Generate Fully Labelled Synthetic Images
in Hours, Not Months!